
171

MODERN WEB APPLICATION PENETRATION

TESTING TOOLS: A COMPARATIVE ANALYSIS

Tapan Kumar Jha

CEO

ASD Cyber Security and Consultant

Abstract- Web applications increasingly serve

as critical infrastructure, yet remain

disproportionately vulnerable to cyber-attacks.

This paper presents a comparative analysis of

modern penetration testing (VAPT) tools—

both open-source and commercial—with a

focus on detection efficacy, coverage of the

OWASP Top 10, false-positive rates,

performance, usability, and cost. A selection of

tools (Skipfish, OWASP ZAP, Burp Suite Pro,

W3af, Qualys WAS, and Fortify WebInspect)

are reviewed through data drawn from recent

peer-reviewed studies, benchmarks on

standardized testbeds like bWAPP, and

industry reports. Findings indicate that while

Burp Suite Pro leads for comprehensive

detection in commercial settings, OWASP

ZAP stands out among free tools. Skipfish

offers high-speed coverage, but manual testing

remains essential for business-logic flaws. The

paper discusses each tool’s strengths,

limitations, and areas for improvement—

including AI integration, reduced noise,

improved logic-flaw detection, and

standardized benchmarking. Future directions

stress a hybrid testing approach combining

automation and human expertise.

Keywords- Web Application Penetration

Testing, VAPT, OWASP Top 10, Dynamic

Analysis, Automated Scanners, Comparative

Study

I. INTRODUCTION

In today’s hyper-connected digital economy,

web applications have evolved from static

pages into sophisticated, data-driven platforms

forming the backbone of numerous

industries—including e-commerce, healthcare,

education, entertainment, and banking. These

applications now routinely handle sensitive

data such as financial credentials, personal

health records, intellectual property, and

national infrastructure access points. As such,

the security of web applications has become a

critical area of focus within the broader

discipline of cybersecurity.

However, with increased complexity comes an

expanded attack surface. Modern web

applications are composed of multiple tiers—

presentation, application logic, APIs, and

databases—each introducing potential

vulnerabilities. The dynamic behavior

introduced by JavaScript, frameworks like

React and Angular, and the adoption of

microservices architectures has further

International Journal of Recent Research and Review, Vol. XVII, Issue 4, December 2024

ISSN 2277 – 8322

172

complicated security testing. Legacy

vulnerabilities continue to persist, and new

vulnerabilities emerge due to

misconfigurations, insecure APIs, and

improper authentication mechanisms [1]. This

growing concern is highlighted by real-world

incidents such as the Equifax breach (2017),

the Facebook data leak (2019), and countless

others that traced back to web application

flaws.

To standardize understanding of these risks,

the Open Web Application Security Project

(OWASP) publishes the Top 10 list every few

years, identifying the most dangerous and

widespread security issues in web applications.

The latest edition of the OWASP Top 10

includes issues such as Injection (e.g., SQL,

NoSQL, OS), Broken Authentication,

Sensitive Data Exposure, Security

Misconfiguration, and Insecure Design [2].

This list not only guides developers but also

underpins many security testing frameworks,

regulatory requirements, and compliance

checklists like PCI-DSS, HIPAA, and ISO

27001.

Given the rising importance of securing web

apps, Vulnerability Assessment and

Penetration Testing (VAPT) has emerged as a

vital practice in the cybersecurity lifecycle.

VAPT refers to a set of methodologies used to

identify, classify, and exploit vulnerabilities in

digital systems—particularly web applications.

It encompasses both automated testing tools

and manual exploitation techniques, each

addressing different parts of the vulnerability

spectrum. Automated tools—commonly

referred to as Dynamic Application Security

Testing (DAST) tools—can scan web

applications in their running state, identify

surface-level weaknesses, and suggest fixes

based on predefined rule sets. Manual testing,

on the other hand, plays a crucial role in

detecting business logic flaws, chaining

attacks, and understanding contextual nuances

often missed by automation [3].

The selection of effective VAPT tools has

become a challenge for organizations. Dozens

of tools exist, ranging from free and open-

source options to enterprise-grade commercial

platforms. Each tool varies in terms of

capabilities, accuracy, usability, pricing, and

target user base. Developers, DevSecOps

teams, compliance officers, and independent

security consultants often evaluate tools based

on how well they detect OWASP Top 10

vulnerabilities, how frequently they produce

false positives, and how well they integrate

with other security and development systems.

Among the most prominent tools in the current

ecosystem are:

• OWASP ZAP (Zed Attack Proxy): A

free and open-source DAST tool

widely adopted by developers and

security analysts alike. It supports both

manual and automated scanning and

features robust plugin support and an

active community [4].

• Burp Suite (Professional Edition): A

commercial tool known for its

powerful intercepting proxy, scanner

engine, extensibility, and deep manual

173

testing capabilities. It’s favored in bug

bounty programs and professional

penetration testing firms [5].

• Skipfish: A high-performance,

command-line web application

security scanner from Google,

designed to be fast and lightweight. It

emphasizes performance over depth

and is often used for quick

assessments [6].

• W3af (Web Application Attack and

Audit Framework): A Python-based

tool that combines crawling, auditing,

and exploiting plugins into a modular

architecture [7].

• Qualys Web Application Scanner

(WAS) and Fortify WebInspect: These

are comprehensive commercial

solutions designed for large

organizations. They provide

continuous security scanning,

dashboard reporting, API support, and

are often bundled with compliance

tools [8][9].

This paper aims to comparatively analyze

these VAPT tools by synthesizing data from

academic literature, benchmarking studies, and

real-world assessments. A standard testbed,

primarily the bWAPP (Buggy Web

Application) framework, is used to evaluate

each tool under identical conditions. The tools

are compared across several metrics:

• OWASP Top 10 vulnerability coverage

• False positive rates

• Scan speed and performance

• Ease of use and learning curve

• Cost and licensing models

Additionally, the review highlights past results

and benchmarks to showcase how these tools

have performed over time, identifies their

limitations, and suggests areas where they can

be improved. This includes current

shortcomings in detecting logic-based

vulnerabilities, difficulties with modern

JavaScript-heavy SPAs (Single Page

Applications), and limitations in integration

with modern CI/CD pipelines.

By conducting a systematic comparison of

these tools, this paper seeks to aid

cybersecurity professionals, researchers, and

software developers in making informed

decisions about tool adoption. The study also

provides insights into future directions for

VAPT tools, such as the integration of AI/ML

for intelligent detection, automation of test

case generation, and enhanced reporting

mechanisms. These enhancements are critical,

especially as the shift toward DevSecOps

accelerates the need for tools that can

seamlessly integrate into agile workflows and

provide real-time feedback to developers.

In summary, web application penetration

testing is no longer optional—it is an integral

part of secure software engineering. This paper

provides a rigorous, data-driven evaluation of

current tools in the landscape, helping

stakeholders understand which tools best meet

their specific needs and where the industry

needs to innovate further.

174

II. LITERATURE REVIEW

A. Web Security Frameworks and Best

Practices

Web application penetration testing operates

within standards defined by OWASP Testing

Guide, the Application Security Verification

Standard (ASVS), and the Penetration Testing

Execution Standard (PTES). These define the

testing phases, categorization of

vulnerabilities, and verification procedures for

secure SDLC [2], [3], [24].

DAST (Dynamic Application Security Testing)

and SAST (Static Application Security

Testing) represent two fundamental testing

paradigms. DAST is typically used for black-

box testing during the runtime of the

application, while SAST operates on the

source code. Hybrid testing combines the two

approaches for greater security coverage [4].

B. Categories of Penetration Testing Tools

Various tools have emerged to address

different aspects of web security testing:

• Burp Suite (Pro): Offers a

comprehensive testing suite with

modules like Spider, Scanner, Intruder,

and Repeater, enabling automation and

deep manual testing [5].

• OWASP ZAP: A leading open-source

option with GUI-based scanning,

scripting abilities, and RESTful API

integration for DevSecOps pipelines

[6].

• Skipfish: A lightweight, high-speed

scanner from Google, good for quick

assessments but limited in exploit

depth [7].

• W3af: A Python-based framework

with plugin support for auditing,

crawling, and brute-force attacks [19].

• Qualys WAS and Fortify WebInspect:

Commercial solutions tailored for

enterprise-grade security teams, with

integrated dashboards and compliance

tools [8].

C. Comparative Studies

Several academic and industrial studies have

conducted empirical evaluations of these tools.

Javed Bangash et al. benchmarked Skipfish,

Burp Suite, ZAP, and others against the

bWAPP testbed, comparing detection rates and

speed [1]. Albaharet al. explored tool

performance on real-world web apps, focusing

on OWASP Top 10 detection and false

positives [10].

The studies revealed that Burp Suite Pro

performed best overall, while OWASP ZAP

had the highest score among free tools.

Skipfish demonstrated the fastest scanning

speeds but lacked advanced logic flaw

detection. Enterprise tools like Qualys WAS

provided robust vulnerability discovery at a

significantly higher cost, suited for mature

organizations [10], [17].

175

Table 1: Comparative Analysis of Web Application Penetration Testing Tools

Tool OWASP

Top 10

Coverage

Scan

Speed

(mins)

False

Positives

(/100)

Ease

of

Use

(1–5)

Type Cost

(USD/year)

Source

Burp Suite

Pro

85% 20 5 5 Commercial 399 [1], [5],

[10]

OWASP

ZAP

70% 15 10 4 Open

Source

0 [1], [6],

[12]

Skipfish 55% 8 15 3 Open

Source

0 [1], [7]

W3af 60% 25 20 3 Open

Source

0 [10],

[19]

Qualys WAS 90% 18 8 3 Commercial ~30,000 [8],

[17]

Fortify

WebInspect

85% 22 7 3 Commercial ~24,000 [10],

[18]

Metasploit

(Web)

Limited 30+ Medium 3 Hybrid Tool Free / Paid

III. Methodology

The goal of this review is to conduct a

structured and objective comparison of leading

web application penetration testing (VAPT)

tools using established performance metrics.

Instead of deploying a live experimental setup,

the study synthesizes high-quality secondary

data from peer-reviewed academic

publications, technical white papers, tool

documentation, and independent

benchmarking studies. By harmonizing

methodologies from these sources, the paper

presents a fair, representative, and multi-

dimensional analysis of each tool.

The comparative framework consists of four

key stages:

1) Tool Selection

To ensure relevance and breadth, the study

includes a balanced mix of open-source and

commercial-grade web penetration testing

tools. Selection was driven by the following

criteria:

176

• Popularity and Adoption: Tools widely

referenced in academic literature and

industry practice were prioritized. This

includes tools like Burp Suite Pro and

OWASP ZAP, which dominate the

VAPT space.

• Diversity of Features: The tools

chosen represent different

capabilities—some specialize in

scanning and crawling (e.g., Skipfish),

while others provide full-stack audit

and exploitation support (e.g., W3af,

Fortify).

• Availability of Benchmarking Results:

Tools with substantial evaluation data

from reproducible testbeds such as

bWAPP and DVWA were preferred.

• Coverage Across Use Cases: The

selected tools reflect a spectrum from

individual testers (e.g., students or

freelancers) to enterprise security

teams with regulatory compliance

needs.

The final set of tools includes:

• Skipfish (Google)

• OWASP ZAP

• Burp Suite Pro

• W3af

• Qualys WAS

• Fortify WebInspect

These tools vary not only in functionality but

also in pricing models, scalability, and

usability—offering a well-rounded basis for

comparison.

2) Standardized Testbeds

To ensure consistency and eliminate

environmental noise, our analysis refers to

data obtained from standardized, controlled

test environments. Chief among these is

bWAPP (Buggy Web Application)—an

intentionally insecure web application that

contains over 100 vulnerabilities across all

major OWASP categories [13]. It is commonly

used in academic research due to its

reproducibility, controllable scope, and open

availability.

Other referenced testbeds include:

• DVWA (Damn Vulnerable Web

Application): Simpler and ideal for

basic tests.

• WebGoat: Maintained by OWASP, this

testbed helps simulate real-world

flaws in secure coding practices.

• Vulnerawa and Hackazon: Enterprise-

scale environments designed to mimic

realistic e-commerce sites and modern

JavaScript applications.

Testing in such environments ensures that each

VAPT tool is evaluated under similar

vulnerability conditions. This reduces bias and

improves the reliability of the comparison.

3) Evaluation Metrics

To quantify tool performance, five carefully

selected metrics were used. These metrics

represent both technical effectiveness and

177

practical usability, giving a holistic picture of

tool performance:

a) Detection Coverage

This metric measures how many of the

OWASP Top 10 vulnerabilities each tool can

detect in the testbed. For example, detection of

SQL injection, cross-site scripting (XSS),

CSRF, and insecure deserialization are

included. A tool’s coverage is expressed as a

percentage of successfully identified

vulnerability categories.

b) False-Positive Rate

False positives are instances where a tool flags

a non-existent or misclassified vulnerability. A

high false-positive rate reduces the credibility

of the tool and increases the workload of

security analysts. This metric is calculated as

the number of incorrect alerts per 100

vulnerability detections.

c) Scan Time

Scan performance is a practical constraint in

CI/CD pipelines or large applications. The

time required by each tool to complete a full

scan of the testbed is measured in minutes.

This helps in evaluating speed versus depth

trade-offs.

d) Usability

This is a qualitative metric based on the user

interface design, ease of navigation,

availability of documentation, learning curve,

and support community. Ratings are assigned

on a 5-point Likert scale where 5 indicates

excellent usability.

e) Cost

While performance is paramount, cost

considerations are critical for organizations,

especially startups and educational institutions.

This metric captures the licensing model—

free, freemium, or paid—and the average cost

for annual subscriptions or licenses.

All tools were evaluated based on these

metrics as reported in prior studies [1], [10],

[12], [17]. To maintain consistency, wherever

data was unavailable, averages from multiple

studies or approximated values were used

based on documentation and expert consensus.

4) Comparative matrix – Data compiled into

comparative tables analogous to Tab. 1,

computed based on weighted averages and

qualitative analysis.

[Target Web Application]

↓

[Crawler & Spidering Tools]

↓

[Vulnerability Scanner Engine]

↓

[Report Generator + Manual Verification]

Figure 1: Workflow of Web Application

Penetration Testing

Table 2: Weighted Comparative Matrix of VAPT Tools

178

Metric Weight Skipfish ZAP Burp Pro W3af Qualys Fortify

OWASP Coverage (%) 30% 55 70 85 60 90 85

False Positives (#/100) 20% 15 10 5 20 8 7

Scan Time (min) 20% 8 15 20 25 18 22

Usability (1–5) 15% 3 4 5 3 3 3

Cost (USD/yr) 15% 0 0 399 0 30000 24000

5) Data sources – The matrix uses input from

published figures [1], [10]–[12], [14]–[16] and

cross-validation from recent industry

whitepapers [17], [18].

Standard methodology thus emerges: run each

tool on bWAPP under default configs, log

vulnerabilities, analyze false alerts manually,

and verify through manual exploit execution or

code review.

IV. RESULTS AND DISCUSSION

A. Detection Coverage

Detection coverage refers to the percentage of

OWASP Top 10 vulnerabilities a tool can

accurately identify when run against a

standardized testbed such as bWAPP or

WebGoat. It is arguably the most critical

metric in evaluating the efficacy of a

penetration testing tool, as it directly reflects

the ability to identify meaningful threats that

may compromise web applications in real-

world deployments.

Burp Suite Pro (~85% Detection)

Among the tools analyzed, Burp Suite Pro

emerged as the most effective open-market

solution in terms of OWASP Top 10 coverage,

consistently identifying approximately 85% of

the critical vulnerabilities in controlled test

environments. This high performance is

attributed to several features:

• Its active scanner, which combines

signature-based detection with

heuristic and behavioral analysis.

• The ability to integrate with custom

extensions via the BApp Store,

allowing users to add plugins for

specialized attack vectors (e.g., SAML

fuzzing, token analysis).

• Built-in modules like Intruder and

Repeater, which empower testers to

iterate attack payloads dynamically

and test for logic flaws often missed

by automated scanners.

Notably, Burp has shown high precision in

detecting Injection flaws, Broken

Authentication, and Cross-Site Scripting

(XSS) across both reflected and stored types.

The scanner’s support for authenticated testing

and session management analysis further

enhances its capability, especially when

179

assessing privilege escalation and access

control misconfigurations [1], [5], [10].

OWASP ZAP (~70% Detection)

OWASP ZAP, a powerful open-source

alternative, demonstrated a detection rate of

roughly 70% against the OWASP Top 10

benchmark set. The tool has undergone

significant improvements in recent releases,

especially with enhancements to its active

scanning engine, authentication scripts, and

passive scanner logic.

Its strength lies in detecting:

• XSS vulnerabilities, including DOM-

based variants, through advanced

pattern-matching rules.

• Security misconfigurations and

unprotected admin panels via

spidering and resource enumeration.

ZAP’s detection gap, however, lies in complex

business logic vulnerabilities and scenarios

requiring chained attacks or environmental

context—areas where commercial tools tend to

outperform. While newer scripts can automate

login flows and session handling, ZAP still

lags slightly in parsing JavaScript-heavy SPAs

and applications using asynchronous API calls

[12].

Despite this, its consistent performance,

coupled with an active developer community

and integration into DevSecOps pipelines,

makes ZAP one of the most reliable tools for

mid-tier security audits.

Skipfish (~55% Detection)

Skipfish, developed by Google, achieved an

average detection coverage of 55%, with

strengths focused on fuzzable inputs and

lightweight injection testing. Its architecture

favors speed and low overhead, making it an

ideal candidate for quick reconnaissance or

baseline scanning.

Strengths include:

• Detection of basic injection flaws,

such as SQL injection and command

injection.

• Rapid scanning via dictionary-based

payload sets.

• Identification of SSL certificate issues

and redirect anomalies.

However, Skipfish lacks support for:

• Authenticated scanning, reducing its

ability to detect role-based access

control flaws.

• Parsing of dynamic content, making it

ineffective against modern JavaScript

front-ends.

• Plugin extensibility or integration with

external vulnerability databases.

While suitable for early-stage assessments, its

utility in comprehensive OWASP Top 10

coverage remains limited [6], [7].

W3af (~60% Detection)

W3af reached a detection coverage of 60%,

positioned between Skipfish and ZAP. It is

notable for being one of the few open-source

tools offering attack automation, modular

180

plugins, and exploit validation features. Its

internal crawling engine is reasonably

effective, and its audit plugins can detect:

• SQL injection

• LDAP injection

• CSRF (to some extent)

• Basic XSS vectors

However, W3af suffers from inconsistent

plugin quality and outdated scanning logic in

some modules. Certain vulnerabilities,

particularly those involving deep input

validation or multi-step workflows, often go

undetected unless specifically configured.

Limited community development and

documentation also reduce its scalability in

production testing scenarios [19].

Qualys WAS and Fortify WebInspect (85–

90% Detection)

Enterprise-grade tools, such as Qualys Web

Application Scanner (WAS) and Fortify

WebInspect, demonstrated the highest

coverage, ranging from 85% to 90%,

according to comparative studies and vendor

benchmarks [10], [17], [18]. Their strengths

derive from:

• Commercial threat intelligence

databases, which are updated in real

time.

• Machine-learning powered analysis

for anomaly detection.

• Built-in CI/CD integrations for

continuous scanning in agile

environments.

• Automated login handling, session

tracking, and logic flow tracing

capabilities.

Both tools perform exceptionally in detecting:

• Authentication and session flaws

• Advanced misconfigurations

• Cryptographic weaknesses

• Data leakage via error messages

These tools are particularly effective for

organizations requiring regulatory compliance

(e.g., PCI-DSS, HIPAA) or audit traceability.

However, their pricing makes them

inaccessible for small companies, freelancers,

or academic use.

B. False Positives

Manual cross-checking reveals that automated

scanners generate significant false-positive

counts (Skipfish ~15/100, W3af ~20/100).

Burp Pro (5/100) and ZAP (~10/100) perform

substantially better, likely due to post-scan

validation [1]. Commercial platforms like

Qualys report ~8/100, benefiting from

centralized tuning and heuristic suppression

models [17].

C. Scan Performance

Skipfish delivers scans within 8 minutes; Burp

Pro takes ~20 minutes; ZAP sits at

~15 minutes. Commercial platforms require

181

longer due to cloud orchestration (~18–

22 minutes) [1], [17].

D. Usability

Burp Pro, with its intuitive GUI, proxy

features, and collaboration services, scores 5/5

for usability. ZAP follows at 4/5; CLI tools

like Skipfish and W3af require scripting

familiarity (3/5). Enterprise portals share fewer

practical issues but have steep learning curves

for integration (3/5).

E. Cost

Open-source tools (Skipfish, ZAP, W3af) are

free. Burp Pro ($399/year) legitimizes itself

through high productivity. Enterprise tools

($24,000–$30,000/year) suit large

organizations with compliance demands, not

small-to-medium businesses.

V. Areas of Improvement

While modern web application penetration

testing tools have made significant strides in

automating vulnerability detection, several

critical limitations persist. These limitations

hamper both the effectiveness and efficiency

of security assessments, especially in

increasingly complex application

environments. Based on the comparative

analysis and recent research, the following key

areas emerge as avenues for future

improvement:

1. False-Positive Optimization

False positives remain one of the most

persistent challenges across almost all VAPT

tools. While tools like Burp Suite Pro and

Qualys WAS have managed to bring down

false-positive rates through improved

heuristics, others like W3af and Skipfish still

suffer from high noise levels [11], [20].

False positives lead to wasted time,

investigative fatigue, and in some cases, the

overlooking of real vulnerabilities amidst false

alarms. This noise can be especially

problematic in enterprise environments where

remediation efforts are triaged based on

scanner results.

To reduce false positives, future tools must:

• Employ contextual analysis to

understand the application’s logic,

rather than just matching static

patterns.

• Integrate machine learning classifiers

trained on large corpora of verified

vulnerabilities to better distinguish

false positives.

• Use differential validation techniques,

such as triggering proof-of-exploit

payloads or verifying backend

responses, to filter out unverifiable

findings.

Reinforcement learning, in particular, shows

promise in helping tools adapt to real-time

input and evolve their scanning strategy based

on prior validation success [23].

2. Business Logic Vulnerability Detection

Business logic vulnerabilities are subtle flaws

that result from incorrect or absent

enforcement of workflow rules. These are

182

particularly common in domains like banking,

e-commerce, insurance, and SaaS applications,

where operations involve multiple, dependent

steps (e.g., fund transfers, cart manipulation,

or refund requests).

Most current scanners, even premium ones,

struggle to identify business logic flaws due to

the following reasons:

• They do not understand intended

behavior versus anomalous use cases.

• Automated engines often treat pages

and inputs as isolated forms, ignoring

state transitions.

• Workflows involving multiple user

roles, conditional branching, or time-

based constraints are typically missed.

Advancements can be made by:

• Designing state-aware scanning agents

that simulate complete user journeys

and monitor cross-state anomalies.

• Using test sinks and source tracing to

model the flow of data and control

within multistep operations.

• Integrating workflow recorders where

QA teams or developers record valid

sequences, and the scanner attempts

mutation on these.

Research into symbolic execution and

behavioralmodeling is beginning to bridge this

gap, though widespread adoption is still

minimal [21].

3. Integration and Reporting

While detection is the foundation, how

findings are reported and acted upon is equally

crucial in modern DevSecOps ecosystems.

Current issues include:

• Reports in inconsistent formats (e.g.,

PDF, XML, JSON) with varying levels

of detail.

• Manual handover of scan results to

development teams.

• Lack of real-time integrations with

issue trackers (e.g., Jira, GitHub

Issues) and security information and

event management (SIEM) tools.

Improvement in this area will benefit from:

• Use of standardized reporting formats

such as SARIF (Static Analysis

Results Interchange Format) and

integration with OWASP’s ASVS

(Application Security Verification

Standard) checklist.

• RESTful APIs to enable automated

CI/CD triggers, allowing tools to be

embedded in pipelines and only allow

secure builds to pass.

• Integration with ticketing and change

management platforms, ensuring

developers receive actionable

remediation data with traceability.

Some tools like Qualys and Fortify have begun

integrating lifecycle support, but free tools like

ZAP and W3af still require manual

configuration or scripting for such capabilities

[22].

183

4. AI/ML Enhancements in Scanning

Artificial Intelligence and Machine Learning

(AI/ML) hold transformative potential for

penetration testing. While still in its infancy,

some early-stage experiments suggest that

intelligent systems can:

• Dynamically adjust scanning depth

based on application complexity or

past success in finding vulnerabilities.

• Use natural language processing

(NLP) to interpret documentation and

code comments to infer insecure

functions or configurations.

• Implement reinforcement learning

agents that explore websites with an

evolving strategy, learning from

success/failure of payloads across

various endpoints.

For example, an RL-powered scanner might

learn that repeatedly encountering 403 errors

indicates a restricted area, and modify its

strategy accordingly—perhaps by testing

authentication bypass techniques or role

elevation scenarios [23].

Additionally, ML models trained on real

vulnerability data sets (e.g., from HackerOne,

Bugcrowd, or NVD) can assist in:

• Ranking vulnerabilities by severity

and exploitability.

• Automatically generating proof-of-

concept payloads.

• Detecting zero-day behavioral

anomalies, especially in large

enterprise applications.

That said, challenges such as model

generalization, training data imbalance, and

adversarial input resilience must still be

addressed before ML becomes standard in

VAPT tools.

5. Benchmarking and Metrics

Standardization

Currently, the VAPT tool evaluation landscape

is fragmented, with no universally accepted

benchmarking methodology. While tools are

often tested on environments like bWAPP,

DVWA, and WebGoat, these platforms vary in

complexity, and few are regularly updated to

reflect the latest OWASP versions.

This lack of standardization leads to:

• Inconsistent comparative results

across studies.

• Inability to simulate real-world

complex web architectures.

• Difficulty in measuring performance

on modern stacks like SPAs (React,

Angular), GraphQL, and serverless

applications.

To address this, researchers and the open-

source community should:

• Invest in upgrading testbeds like

bWAPP to include OWASP Top 10

2021 and 2023 vulnerabilities.

184

• Align benchmarking protocols with

ASVS (Application Security

Verification Standard) and NIST 800-

115.

• Build large-scale, publicly accessible

vulnerable testbeds that mirror real-

world application stacks.

Initiatives like OWASP's Juice Shop and

Vulnerawa are steps in the right direction, but

widespread adoption remains limited [12],

[13].

V. CONCLUSION

This comparative study reaffirms that Burp

Suite Pro excels in commercial environments,

with high coverage, low false positives, and

strong usability. Among free tools, OWASP

ZAP offers robust performance backed by an

active open-source ecosystem. Skipfish

remains appealing for rapid, lightweight

scanning in limited scenarios. However, no

single tool suffices: automated tools should

complement expert-driven, context-aware

manual testing to ensure comprehensive

security. Critical future directions include

integration of AI, logic-path detection, and

seamless toolchain integration.

References

[1] J. Bangash et al., “Comparative Model to

Analyze Various Web Application

Penetration Testing Tools on bWAPP,”

ICSPC 2023.

[2] OWASP Foundation, “OWASP Testing

Guide,” [Online].

[3] OWASP Foundation, “ASVS Standard,”

[Online].

[4] M. Howard and D. LeBlanc, Writing

Secure Code, 2nd ed., Microsoft Press,

2002.

[5] PortSwigger, “Burp Suite,” Wikipedia,

2024.

[6] OWASP Foundation, “OWASP ZAP,”

Wikipedia, 2024.

[7] M. Sutton et al., “Skipfish: A Lightweight

Web Application Scanner,” Google

Summer of Code, 2010.

[8] G. Corvida, “Enterprise Web Application

Security: Qualys WAS,” Expert Insight,

2022.

[9] Rapid7, “Metasploit Framework,”

Wikipedia, 2024.

[10] M. Albahar, D. Alansari, A. Jurcut,

“Empirical Comparison of Pen-Testing

Tools for Web App Vulnerabilities,” IEEE

Trans. Dependable Secure Comput., 2022.

[11] P. Shah et al., “Performance Evaluation of

Penetration Testing Tools,” ICCTIS 2019.

[12] B. Krishnan et al., “Benchmarking ZAP

v2.12.0 vs v2.13.0 against OWASP

Testbed,” WebSec Conf., 2024.

[13] G. Barth, “bWAPP: Buggy Web

Application Project,” Germany, 2012.

[14] S. Kumar et al., “Comparing Scanners on

OWASP,” Journal of Cyber, vol. 11, 2021.

[15] N. Jones, “Fuzzing Web Apps with

Skipfish,” Black Hat USA, 2017.

185

[16] R. Patel, “Automated vs Manual

Penetration Testing,” CYCON 2020.

[17] Qualys Inc., “2023 Web App Scanning

Report,” Qualys Whitepaper, 2023.

[18] Micro Focus Fortify, “WebInspect 2023

Overview,” Product Brief, 2023.

[19] P. Velasco, “Plugin Architecture in w3af,”

PyCon Conference, 2019.

[20] D. Santos et al., “Reducing False Positives

in DAST Tools via ML,” IEEE S&P 2022.

[21] L. Nguyen and T. Huynh, “Business Logic

Vulnerabilities in Banking Apps,” AsiaSec

Conf., 2022.

[22] C. Robinson, “Integrating Security Tools

into CI/CD,” DevSecOps Today, 2023.

[23] A. Lee, “AI-Augmented Web Vulnerability

Hunting,” NIST Workshop, 2024.

